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1. 

The D’Alembert equation of motion for the flexible string is valid only for a large
pre-stressed tension, T, and small values of the string element gradient, 1y/1x. In the
practical case of the finite string the solution takes on a standing wave form set by the
boundary and initial conditions. The theory of the impact of a particle with a
D’Alembertian flexible string cannot rely on the elastic properties of the string since it is
assumed not to have any: i.e., the tension is assumed not to increase as the string is
stretched. The basic problem is how to devise a strategy which will describe the changing
string shape and its velocity profile during the impact. It seems possible that the basic
assumptions of the D’Alembert equation could be concealing a subtle explanation for the
early stages of the collision. In this article the finite string is considered and the solutions
of the D’Alembert flexible string equation and another equation which takes some account
of finite stretching and significant string gradient are compared.

2. 

D’Alembert’s equation of motion for an element of a finite flexible string of
cross-sectional area A and density r held at tension T is

rA 12y/1t2 =T 12y/1x2.

D’Alembert (1746) also offered a general solution of this equation:

y=F(x+ c1t)+G(x− c1t).

In this F and G are functions of (x+ ct) and (x− ct) and represent two unchanging wave
forms which move to the left and right along the string with constant speed c1 given by
(T/rA)1/2.

In D’Alembert’s derivation the string tension was assumed to be much greater than any
increase caused by stretching and in so doing the string element length ds was taken to
be the same as dx. A modified equation (using an expression for the increase in tension
due to stretching [1]) which does take account of finite stretching could be

rA 12y/1t2 = [T+YA(ds−dx)/dx] 12y/1x2.

Y is Young’s modulus and the extension is assumed to comply with Hooke’s law.
Knowing that ds=[1+(dy/dx)2]1/2 dx and neglecting fourth and higher powers, one has

12y/1t2 = [c2
1 + 1

2c
2
2(1y/1x)2] 12y/1x2,

where c1 = (T/rA)1/2 is the speed of transverse waves along the D’Alembert string and
c2 = (y/r)1/2 is the speed of compressional longitudinal waves through the string.

Somewhat surprisingly this equation does not appear to have been considered in the
modern literature (or elsewhere?). The closest equivalent could be that of Zabusky [2]. The
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exact solutions of such NPDEs are of extreme complexity and do not in general lend
themselves to simple applications. An approximate solution is, however, possible if the
expression is linearized. Such a solution is as follows.

The solution of the D’Alembert equation for the particular case of the finite string will
be considered first. A flexible string is stretched to a tension T between two fixed points
at 0, 0 and L, 0. It can be shown that

y(x, t)= s
a

n=1

An sin 0npx
L 1 cos 0npc1t

L
+c1,

where An and c are arbitrary constants. Furthermore if the string shape f(x) between 0, 0
and L, 0 at time t=0 is known, then

An =
2
L g

L

0

f(x) sin (npx/L) dx

and c depends on the speed of the string at time t=0. It is sufficient to say that each
term of this series solution will satisfy the D’Alembert equation as could be tested by direct
substitution. It also satisfies the boundary conditions and the arbitrary constants can be
determined by the initial conditions when t=0. An are the Fourier coefficients of the string
shape and c is related to the phase or velocity profile at this moment. It is convenient
though not necessary to interpret this as a set of standing waves produced by continuous
reflections between the ends of the string. The solution is, however, no more than a
dynamic picture of the changing overall string shape through time. The reality of the
standing waves as individual entities has been the subject of some debate [3, 4]. But it
is known, for instance, that the sound energy produced by a plucked string can be
analyzed in terms of the amplitudes of the vibrational modes predicted by the above
expression.

For a plucked string (see Figure 1), the Fourier coefficient An at t=0 can be shown to
be

An =2gL2 sin (npa/L)/n2p2a(L− a).

In this case the velocity profile at t=0 will be zero and c=0. If this value is used in the
series solution and the string shape is run through one cycle of the fundamental one obtains
the characteristic three straight lines construction described by Helmholtz [5]. The
longitudinal crest velocity of the shapes is 2c1. The initial conditions will be duplicated
at the start of every cycle.

But suppose the plucked string has a significant gradient or value of g? Quite clearly
the D’Alembert conditions will be violated and one will need to consider a solution of the
non-linear equation which takes note of a finite increase in tension due to the stretching
of the string element. Classical methods are available to attack this problem, harmonic
balance etc. [1], but in an attempt to simplify the mathematics a slightly different and less
rigorous approach is adopted here to linearize the finite amplitude equation.

Assume that a standing wave solution exists such that

y(x, t)= s
a

n=1

An sin (npx/L) cos (2pnnt).

The cosine term is concerned with the allowable frequencies of the standing wave
components. The increase in tension throughout the string caused by any given finite
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displacement will cause the mode frequencies to increase. This will also be reflected in the
relative magnitude of the finite stretching term in the nonlinear equation of motion:
1
2c

2
2(1y/1x)2. If one considers the nth component in the series solution and assumes that the

standing waves are independent entities one has an expression for this term:
1
2c

2
2A2

nn2p2 cos2 (npx/L) cos2 (2pnnt)/L2.

Quite clearly this can take any value between 0 and 1
2c

2
2A2

nn2p2/L2 but it does show how much
the tension will vary over the vibrational cycle. One can now postulate that since the
maximum value is proportional to g2 it is possible to estimate that the ‘‘average’’ tension
increase will be one third of this value. This will linearize the equation and the Fourier
coefficient An will be the same as for the D’Alembert flexible string. It also allows one to
make a direct though approximate estimate of the allowable frequencies for the finitely
stretched flexible string.

One can compare this with the frequencies of the D’Alembert harmonics:
nn = nn1 = nc1/2L. One therefore has, for the dispersive non-linear ‘‘harmonics’’,
nn =[c2

1 + 1
6c

2
2A2

nn2p2/L2]1/2n/2L. Since the allowable frequencies do not in general form a
harmonic sequence the initial conditions will not be recreated periodically. The string shape
will change irreversibly with time. The manner in which this occurs will depend on the
magnitude of g, the position at which the string is plucked and the elastic properties of
the string itself.

Figure 1(a) shows the changing shape of a plucked string expressed as a function of
the string flexible fundamental. The parameters used are typical of a piano wire. After

Figure 1. Initial condition for plucked string. (a) Profile of plucked string as a function of the flexible string’s
fundamental: L=1 m, N=9, a=L/N m, d=1 mm, T=7×102 N, Y=20×1010 N/m2, r=7·8×103 kg/m3,
g=5 mm, cycle=5·917 ms. Number of cycles: , 0·2; - - - , 10·2; — — —, 30·2; –·–, 50·2; ——, 100·2.

(a)



    621

100 cycles the string shape retains little of the characteristics of a D’Alembert flexible
string.

As g increases in value the allowable frequencies will show a marked departure from
the harmonic sequence with the lower frequencies being affected most. This could be
described as ‘‘negative’’ inharmonicity which contrasts with the normal (positive)
inharmonicity found in a stiff wire. A possible summation of the effects in a practical case
will be considered in a future article.

A further curiosity arises from this treatment. The solution can also be applied to a string
in which the pre-stressed tension is zero. In this case

nn =(p/2L2z6)c2Ann2.

Substituting the value of An for the plucked string in this expression yields

nn =(1/pz6)c2[g/a(L− a)] sin (npa/L).

The allowable frequencies are markedly different from those of a D’Alembert flexible string
and besides having a minimum value when n=1 will also have a maximum of
c2g/a(L− a)pz6. In general this does not place a restriction on the number of available
frequencies but does set the band in which they can occur. However, if the string is
plucked at a node, such that a is L/N and N a whole number, these will be a repeating
set of N frequencies for the standing waves. The particular case of N=2, i.e., plucked
at the string centre, allows only a single frequency for all the standing waves. A
configuration of an isosceles triangle of changing altitude would thus be conserved
throughout the vibrational cycle. The D’Alembert string would take the three line
dynamic configuration with a vertically moving horizontal line joined to two fixed gradient
sides.

3.   

It is not proposed to develop an impact model in this article. Instead the solutions of
the equations of motion following an impact which leaves a momentary distortion in a
short section of the string will be compared.

If the string is struck by a particle at a, 0 there will be a reaction which could result
in a V notch shape being formed as the particle leaves. If one assumes such a shape (see
Figure 2) one will also have a zero velocity profile, c=0, and hence before transverse wave
motion commences

An =(4gL/n2p2b)[1−cos (npb/L)] sin (npa/L).

Figure 2(a) shows a sequence of snapshots of the string profile, demonstrating how rapidly
the form degenerates over successive cycles. The D’Alembert string is shown for reference
purposes at the end.

One of the more attractive features of D’Alembert’s general solution is the conservation
of the string shape once created. This should be qualified slightly. Thus regardless of the
boundary conditions, if a momentarily static shape is released onto the string two similar
shapes i.e., mirror images and half the crest height of the original, will be produced and
will travel in opposite directions along the string with speed c1. A V notch pair would thus
be sustained indefinitely without further distortion in a finite string. The shapes would
appear to be bounced backwards and forwards between the supports. This notion may be
suspect.
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Figure 2. Initial condition for impulse type distortion. (a) String profile following impulse type deformation.
L=1 m, N=9, a=L/N m, b=50 mm, d=1 mm, g=10 mm, y=20×1010 N/m2, T=700 N,
r=7·8×103 kg/m3, cycle=5·917 ms. (i) Initial condition; (ii) 0·2 cycles; (iii) 1·2 cycles; (iv) 2·2 cycles; (v) 3·2
cycles; (vi) 3·2 cycles for Y=0.

(a)

If one examines the finite amplitude equation of motion one has the concept of an
instantaneous crest velocity:

2[c2
1 + 1

2c
2
2(1y/1x)2]1/2.
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For a string without initial tension, i.e., T=0, one will have a notional speed

(1/z2)c2 01y
1x1.

It can be seen, for example, that if the gradient of the V notch were unity a speed of c2/z2
would be implied. This could then be regarded as a localized condition with the string being
strongly stretched and distorted in the process. It could be compared with a transverse
wave produced by tension alone. In the D’Alembert model this would be equivalent to
c1 = c2/z2: that is, a string tension of YA/2. For a steel wire of diameter 1 mm this would
be an incredible and unbelievable 157 000 N. This can be compared with a practical tension
in a piano wire of 1000 N for T. Whether such a wire could survive such an albeit
momentary deformation is open to question. Certainly string stiffness would militate
against its happening in the first place. But at least the equation for a finite displacement
is aware of the problem which the D’Alembert solution chooses to ignore.

The shape of the localized distortion is clearly a problem. The gradient of any part of
it could easily violate the implied conditions. A square-sided Dirac type impulse
deformation is such an example. Even the neglected term equation would be inadequate
for the purpose.

The highly dispersive nature of an elastically formed V notch can perhaps be better
appreciated if one concedes localized stretching in the vicinity of the point of impact at
a, 0. One could then allow a standing wave solution within the V notch itself. The V notch
would become a finite energy packet momentarily held between (a− b), 0 and (a+ b), 0
at t=0. If one treats this as a string of height g and length 2b plucked at its centre its
frequencies will all take the same value: c2g/pb2z6. The individual wave velocities will
show negative dispersion with the speed of the nth component given by 4c2g/npbz6. The
packet will therefore burst after t=0 with pairs of waves travelling in opposite directions
along the string. This can be contrasted with the D’Alembert string where only a single
pair of shapes will be produced.

It should be noted that the ratio of the V notch height to its base width sets the velocities
which will be of the same order as longitudinal compression waves if g/2b is a sizeable
fraction. A possible role for these high velocity elastic transverse waves should not be
discounted following an impact.

This solution also possesses soliton properties: e.g., the velocities are proportional to the
wave crest amplitudes. The failure to retain the basic shape could be compensated by also
considering string stiffness.

It should be emphasized that the simple V notch considered would be of limited value
in practical cases such as piano hammer interactions. The mass of the hammer is usually
of the same order as that of the string itself and contact times are relatively large but
localized distortions have nevertheless been observed.
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